Abstract
Abstract Transcription factors are important drivers of cancer but the development of therapeutics against these factors has had limited success. We developed a stringent high-throughput chemical genetic screening platform to identify compounds that target oncogenic transcription factor SALL4 dependency in liver cancer. The platform comprises SALL4 low- and high-expressing endogenous and engineered isogenic liver cancer cell lines. Unexpectedly, from screening 21,575 natural product extracts, the top hits were four oxidative phosphorylation inhibitors that selectively reduced SALL4-dependent cell viability. The ATP synthase inhibitor oligomycin suppressed SALL4-expressing cancer in lung and liver cancer cell culture models, and in patient-derived xenograft models of liver cancer. Oligomycin also synergized with sorafenib, the standard-of-care targeted therapy in liver cancer, to effectively suppress SALL4-driven tumorigenesis in vivo. When aberrantly expressed in cancer, SALL4 binds ~50% of mitochondrial genes, including many oxidative phosphorylation genes, to predominantly upregulate their expression. SALL4 upregulation also alters the levels of oxidative phosphorylation-related metabolites and functionally increases oxidative phosphorylation activity. Application of our endogenous/isogenic transcription factor-screening platform revealed a therapeutically actionable oxidative phosphorylation vulnerability in SALL4-expressing cancers. Citation Format: Justin L. Tan, Feng Li, Joanna Z. Yeo, Kol Jia Yong, Mahmoud A. Bassal, Guo Hao Ng, May Yin Lee, Chung Yan Leong, Hong Kee Tan, Chan-Shuo Wu, Bee Hui Liu, Hon Man Chan, Zi Hui Tan, Yun Shen Chan, Siyu Wang, Zhi Han Lim, Tan Boon Toh, Lissa Hooi, Kia Ngee Low, Siming Ma, Nikki R. Kong, Alicia J. Stein, Yue Wu, Matan T. Thangavelu, Atsushi Suzuki, Giridharan Periyasamy, John M. Asara, Yock Young Dan, Glenn K. Bonney, Edward K. Chow, Guo-Dong Lu, Huck Hui Ng, Yoganathan Kanagasundaram, Siew Bee Ng, Wai Leong Tam, Li Chai, Daniel G. Tenen. A high-throughput chemical genetic screen reveals SALL4-induced metabolic vulnerabilities in cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1788.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.