Abstract

Abstract Over the years, the role of B cells in the host immune response to malignancy has been overshadowed by our focus on T cells. The role played by B cells in cancer immunology is complex and controversial. The observation made by our lab that activated B cells alone can mediate tumor regression in the adoptive immunotherapy of solid tumors is innovative (JI 2009; CCR 2011; JSO 2012; EJI 2015). One novel mechanism by which activated B cells mediate tumor regression is via direct tumor cell cytotoxicity in the absence of antibodies. We previously reported that antitumor B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. In this study, we defined additional mechanisms involved in B cell antitumor immunity. Administration of IL-2 significantly augmented the therapeutic efficacy of adoptively transferred tumor-draining lymph node (TDLN) B cells which express IL-2R. Culture supernatant of purified B splenocytes harvested from the mice that received adoptive transfer of 4T1 TDLN B cells plus IL-2 administration produced larger amounts of IgG which bound to 4T1, resulting in 4T1 lysis. Furthermore, we detected CXCR4 expression on 4T1 TDLN B cells, and 4T1 tumor cells produced its ligand CXCL12. Transwell experiments demonstrated the chemotraction of CXCR4-expressing 4T1 TDLN B cells towards CXCL12-producing 4T1 cells. Blockade of CXCR4 using a CXCR4-specific inhibitor, AMD3100, significantly reduced the killing of 4T1 tumor cells by 4T1 TDLN B cells. Blockade of FasL and CXCR4 concurrently inhibited B cell-mediated direct killing of tumor cells in an additive manner, indicating that both Fas/FasL and CXCL12/CXCR4 pathways are involved in the direct killing of 4T1 cells by 4T1 TDLN B cells. TDLN B cells produced perforin. Additional transwell experiments showed that effector B cells could directly kill tumor cells in cell-cell contact via the Fas/FasL and CXCR4/CXCL12 pathways as well as perforin, while without cell contact, perforin secreted by B cells led to tumor cell cytotoxicity. These findings underscore the diversity of function by which B cells can play an important role in the host immune response to tumor, and clearly indicated that transferred effector B cells can act independently of T cells in causing tumor destruction in adoptive immunotherapy. Citation Format: Leiming Xia, Yang Xia, Quanning Chen, Yi Wang, Yangyi Bao, Steven K. Lundy Lundy, Fu Dai, Alfred E Chang, Qiao Li. Adoptively transferred B cells directly kill tumor cells via the CXCR4/CXCL12 & perforin pathways [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1621. doi:10.1158/1538-7445.AM2017-1621

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call