Abstract
Obesity and insulin resistance (IR) lead to impaired cardiac metabolism, resulting in cardiac dysfunction. However, the underlying mechanisms responsible for the development of cardiac dysfunction remain poorly understood. PPARα serves as a key regulator of fatty acid (FA) metabolism in the heart. GSK-3α, a serine/threonine kinase, was dephosphorylated at S21 and activated (2.0 fold, p<0.05) in the hearts of obese mice fed a high-fat diet (HFD) and ob/ob mice. To evaluate the functional significance of GSK-3α upregulation, wild-type (WT) and cardiac specific GSK-3α heterozygous knockout (cGSK-3α HKO) mice were fed a HFD for up to 14 weeks. There was no difference in the food intake or body weight change between WT and cGSK-3α HKO mice. However, cardiac hypertrophy and diastolic dysfunction observed in WT mice were significantly ameliorated in cGSK-3α HKO mice after HFD feeding (8.1± 0.6 and 6.5±0.5, LVW/TL; 24.8±0.9 and 16.6±0.8, deceleration time (DT), all p<0.05). FA oxidation (FAO) (0.81 fold) and ectopic lipid accumulation (Oil Red O staining) were significantly decreased in cGSK-3α HKO mice than in WT mice after HFD feeding. GSK-3α, but not GSK-3β, directly interacted with and phosphorylated PPARα at the ligand binding domain in cardiomyocytes (CMs) and in the heart. PPARα phosphorylation in the heart was significantly increased (2.1 fold, p<0.05) in response to HFD, but it was attenuated in cGSK-3α HKO mice (0.74 fold, p<0.05). Fenofibrate, a PPARα ligand, inhibited GSK-3α-induced PPARα phosphorylation (0.81 fold, p<0.05), reduced ectopic lipid accumulation, FAO (0.84 fold, p<0.05), and attenuated diastolic dysfunction (25.5±3.1 and 18.6±2.5, DT; 0.16±0.04 and 0.08±0.02, EDPVR, all p<0.05) in the heart of HFD fed mice. Collectively, these results suggest that GSK-3α increases PPARα activity through phosphorylation of PPARα, which is inhibited by Fenofibrate. Activation of GSK-3α and consequent phosphorylation of PPARα during obesity and IR could play an important role in the development of cardiac hypertrophy and diastolic dysfunction. Synthetic PPARα ligands inhibit GSK-3α-mediated phosphorylation of PPARα, thereby paradoxically attenuating excessive FA metabolism in cardiomyocytes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have