Abstract
Background: The methods for estimating and assessing propensity scores in the analysis of treatment effects between two treatment arms in observational studies have been well described in the outcomes research methodology literature. However, in practice, the decision makers may need information on the comparative effectiveness of more than two treatment strategies. There’s little guidance on the estimation of treatment effects using inverse probability of treatment weights (IPTW) in studies where more than two treatment arms are to be compared. Methods: Data from an observational cohort study on anticoagulant therapy in atrial fibrillation is used to illustrate the practical steps involved in estimating the IPTW from multiple propensity scores and assessing the balance achieved under certain assumptions. For all patients in the study, we estimated the propensity score for the treatment each patient received using a multinomial logistic regression. We used the inverse of the propensity scores as weights in Cox proportional hazards to compare study outcomes for each treatment group Results: Before IPTW adjustment, there were large and statistically significant baseline differences between treatment groups in terms of demographic, plan type, and clinical characteristics including validated stroke and bleeding risk scores. After IPTW, there were no significant differences in all measured baseline risk factors. In unadjusted estimates of stroke outcome, there were large differences between dabigatran [Hazard ratio, HR, 0.59 (95% CI: 0.53 - 0.66)], apixaban [HR, 0.69 (CI: 0.57, 0.83)], rivaroxaban [HR, 0.60 (CI: 0.53 0.68)] and warfarin users. After IPTW, estimated stroke risk differences were significantly reduced or eliminated between dabigatran [HR, 0.89 (CI: 0.80, 0.98)], apixaban [HR, 0.92 (0.76, 1.10)], rivaroxaban [HR, 0.84 (CI: 0.75, 0.95)] and warfarin users. Conclusions: Our results showed IPTW methods, correctly employed under certain assumptions, are practical and relatively simple tools to control for selection bias and other baseline differences in observational studies evaluating the comparative treatment effects of more than two treatment arms. When preserving sample size is important and in the presence of time-varying confounders, IPTW methods have distinct advantages over propensity matching or adjustment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have