Abstract
Introduction: Spatiotemporal differences in atrial activity are thought to contribute to the maintenance of atrial fibrillation (AF). While recent evidence has identified changes in dominant frequency (DF) during the transition from paroxysmal to persistent AF, little is known about the frequency characteristics of the epicardium during this transition. The purpose of this study was to perform high-resolution mapping of the atrial epicardium and to characterize changes in frequency activity and structural organization during the transition from paroxysmal to persistent AF. Hypothesis: In a porcine model of persistent AF, we tested the hypothesis that the epicardium undergoes spatiotemporal changes in atrial activity and structural organization during persistent AF. Methods: Paroxysmal and persistent AF was induced in adult Yorkshire swine by atrial tachypacing. Atrial morphology was segmented from magnetic resonance imaging and high-resolution patient-specific flexible mapping arrays were 3D printed to match the epicardial contours of the atria. Epicardial activation and DF mapping was performed in four paroxysmal and four persistent AF animals using personalized mapping arrays. Histological analysis was performed to determine structural differences between paroxysmal and persistent AF. Results: The left atrial epicardium was associated with a significant increase in DF between paroxysmal and persistent AF (6.5 ± 0.2 vs. 7.4 ± 0.5 Hz, P = 0.03). High-resolution spatiotemporal mapping identified organized clusters of DF during paroxysmal AF which were lost during persistent AF. The development of persistent AF led to structural remodeling with increased atrial epicardial fibrosis. The organization index (OI) significantly decreased during persistent AF in both the left atria (0.3 ± 0.03 vs. 0.2 ± 0.03, P = 0.01) and right atria (0.33 ± 0.04 vs. 0.23 ± 0.02, P = 0.02). Conclusions: In the porcine model of persistent AF, the epicardium undergoes structural remodeling with increased epicardial fibrosis, reflected by changes in atrial organization index and dominant frequency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have