Abstract

Introduction: 4D flow MRI can assess transvalvular velocity, but validation against continuous wave (CW) Doppler echo is limited in high-velocity regurgitation and stenosis situations. We sought to compare 4D flow MRI and echo peak velocity using a pulsatile echo-MRI flow phantom. Materials and Methods: An MRI-compatible flow phantom with restrictive orifice situated was driven by a left ventricular assist device at 50 bpm (figure 1A). Three orifice shapes were tested: circular, elliptical and 3D-printed patient-specific mitral regurgitant orifice model of prolapse with areas of 0.5, 0.41 and 0.35 cm 2 , respectively. CW Doppler was acquired with peak velocity extracted from the profile. Retrospectively-gated 4D flow MRI was performed (spatial resolution = 2 mm isotropic, temporal resolution = 36 ms, encoding velocity = 400 cm/s). Maximal velocity magnitude was extracted volumetrically (figure 1B). An echo-mimicking profile was also obtained with a “virtual” ultrasound beam in the 4D flow data to simulate CW Doppler (figure 1C). Bland-Altman analysis was used to assess the agreement of temporal peak velocities. Results: 4D flow MRI demonstrated a centrally directed jet for the circular and elliptical orifices and an oblique jet for the prolapse orifice (figure 1B). Peak velocities were in excellent agreement between 4D flow MRI vs. echo for the circular (peak: 5.13 vs. 5.08 m/s, bias = 0.06 ± 0.66 m/s, figure 1D) and the elliptical orifice (peak: 4.95 vs. 4.79 m/s, bias = 0.07 ± 0.87 m/s, figure 1E). The prolapse orifice velocity was underestimated somewhat by MRI by ~10% (peak: 4.41 vs. 4.90 m/s, bias=0.26±1.18, figure 1F). Conclusion: 4D flow MRI can quantify high velocities like echo for simple geometries while underestimating for more complex geometry, likely due to partial volume effects. Further investigation is warranted to systematically investigate the effects of 4D flow MRI spatial and temporal resolution as well as the jet angle on velocity quantification accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call