Abstract
Introduction: Our previous results in vivo indicated PDE5-cGMP-PKG was involved in burn-induced heart dysfunction and PDE5A inhibitor restored the dysfunction. It’s unknown if circulating factors after burn would injure cardiomyocytes. Hypothesis: Circulating factors released after burn induce cardiomyopathy. Methods: Human cardiomyocytes (AC16) were treated with sham-serum, burn-serum (24 hpb-serum) and burn/sildenafil-serum (24 hpb/SIL). We performed cut-edged biochemistry technologies and Illumina RNA sequencing (RNA-seq) in this study. GraphPad Prism 8.4.2 was used for statistics. Results: We found a significant decrease of cGMP level and an increase of cTN1 in 24 hpb-serum group. Treatment with the PDE5A inhibitor Sildenafil completely reversed this change similar to our in vivo work. To understand what bioactive molecules would be involved in the alterations by burn injury, human cardiomyocytes (Ac16) were employed to test the cardiomyocyte response to burn-induced circulating factors. We observed that 24 hpb-serum significantly 1) decreased cell viability and cell proliferation; as well as 2) increased cell cytotoxicity, cell apoptosis and cell ROS production. We also found 24 hpb-serum resulted in cell mitochondrial dysfunction by decreasing ATP production and mitochondrial membrane integrity/potential and increasing mitochondrial ROS. Seahorse and O2K approaches confirmed 24 hpb-serum-induced cardiomyocyte mitochondrial dysfunction as evidenced by decreases of mitochondrial basal respiration, proton leak, ATP production, and maximal respiration. 24 hpb/SIL serum rescued 24 hpb serum-induced Ac 16 cell response, at least partially. Advanced bioinformatic analyses identified 1415 upregulated genes and 1091 downregulated genes in 24 hpb-serum group and 776 upregulated genes and 113 downregulated genes restored in 24 hpb/SIL-serum group. We also analyzed and validated the differentially expressed genes. Conclusions: Our study not only confirmed burn induced heart dysfunction, but also provided evidence for understanding the pathogenic mechanism of circulating factors released after burn injury and preliminary genomic evidence for the mechanism for cardiomyopathy after burn injury.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have