Abstract

Background: Sirtuins (SIRTs) are NAD+-dependent deacetylases and critical regulators of energy metabolism and response to oxidative stress in the heart. Iron is essential for these processes but is toxic when present in excess. Thus, SIRTs may regulate iron levels to ensure adequate supply of this element for their biological functions. SIRT2 is among the least characterized SIRTs and is mainly present in the cytoplasm. We hypothesized that SIRT2 might be required for cellular iron homeostasis. Methods and Results: Iron content was significantly lower in SIRT2-/- mouse embryonic fibroblasts (MEFs) compared to SIRT2+/+ MEFs (non-heme iron: 0.073 vs. 0.060 nmol/μg protein, p=0.02). Gene expression of ferroportin-1 (FPN1), the major cellular iron exporter, was significantly increased in SIRT2-/- MEFs. Similarly, silencing SIRT2 in HepG2 cells decreased cellular iron levels and increased FPN1 expression, indicating that enhanced FPN1 in SIRT2 knockout or knockdown condition increases iron export and reduces cellular iron. To investigate the underlying mechanism, we focused our studies on nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a known regulator of FPN1. Our results demonstrated that Nrf2 is upregulated and translocates into the nucleus in SIRT2-/- MEFs and knocking down Nrf2 in SIRT2-/- MEFs reverses iron deficiency and FPN1 expression. Furthermore, Nrf2 is acetylated by P300/CBP and can be deacetylated by SIRT2. Finally, to confirm the role of SIRT2 in iron regulation, cellular heme and non-heme iron in the heart (major iron-consuming organ) and liver (major iron-storage organ) were measured in wild type (WT) and SIRT2-/- mice. Heme and non-heme iron content were significantly decreased in SIRT2-/- mouse livers compared to WT livers (heme: 2.25 vs. 1.65 nmol/mg protein, p=0.002; non-heme iron: 0.073 vs. 0.064 nmol/μg protein, p=0.03). Furthermore, heme levels were also significant decreased in the heart, while non-heme iron was not significantly altered. Conclusions: Our results suggest that SIRT2 regulates cellular iron homeostasis by deacetylating NRF2 and altering iron export through FPN1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.