Abstract

The location information of road and lane lines is the supremely important thing for the automatic drive and auxiliary drive. The detection accuracy of these two elements dramatically affects the reliability and practicality of the whole system. In real applications, the traffic scene can be very complicated, which makes it particularly challenging to obtain the precise location of road and lane lines. Commonly used deep learning-based object detection models perform pretty well on the lane line and road detection tasks, but they still encounter false detection and missing detection frequently. Besides, existing convolution neural network (CNN) structures only pay attention to the information flow between layers, while it cannot fully utilize the spatial information inside the layers. To address those problems, we propose an attention-based spatial segmentation network for traffic scene understanding. We use the convolutional attention module to improve the network's understanding capacity of spatial location distribution. Spatial CNN (SCNN) obtains through the information flow within one single convolutional layer and improves the spatial relationship modeling ability of the network. The experimental results demonstrate that this method effectively improves the neural network's application ability of the spatial information, thereby improving the effect of traffic scene understanding. Furthermore, a pixel-level road segmentation dataset called NWPU Road Dataset is built to help improve the process of traffic scene understanding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.