Abstract

Localization of the vehicle with respect to road lanes plays a critical role in the advances of making the vehicle fully autonomous. Vision based road lane line detection provides a feasible and low cost solution as the vehicle pose can be derived from the detection. While good progress has been made, the road lane line detection has remained an open one, given challenging road appearances with shadows, varying lighting conditions, worn-out lane lines etc. In this paper, we propose a more robust vision-based approach with respect to these challenges. The approach incorporates four key steps. Lane line pixels are first pooled with a ridge detector. An effective noise filtering mechanism will next remove noise pixels to a large extent. A modified version of sequential RANdom Sample Consensus) is then adopted in a model fitting procedure to ensure each lane line in the image is captured correctly. Finally, if lane lines on both sides of the road exist, a parallelism reinforcement technique is imposed to improve the model accuracy. The results obtained show that the proposed approach is able to detect the lane lines accurately and at a high success rate compared to current approaches. The model derived from the lane line detection is capable of generating precise and consistent vehicle localization information with respect to road lane lines, including road geometry, vehicle position and orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.