Abstract

We use simulations to investigate the interaction of ultra-intense laser pulses with a plasma. With an intensity greater than ${10}^{18}$ W/${\mathrm{cm}}^{2}$, these pulses have a pressure greater than ${10}^{3}$ M bar and drive the plasma relativistically. Hole boring by the light beam is a key feature of the interaction. We find substantial absorption into heated electrons with a characteristic temperature of order the pondermotive potential. Other effects include a dependence on the polarization of the incident light, strong magnetic field generation, and a period of intense instability generation in the underdense plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.