Abstract

The impact of implementing the Chou & Lee scheme for absorption of solar radiation by water vapor in the CPTEC/COLA's General Circulation Model is analyzed in this paper. Comparison with results of the present operational version, which uses the Davies scheme, shows that Chou & Lee scheme leads to more shortwave absorption, thus providing an extra warming of the atmosphere, mainly in the upper troposphere. The changes in the meridional distribution of temperature causes weakening of the subtropical jet in the Southern Hemisphere and strengthening of the Northern Hemisphere jet, which is slightly shifted poleward. The increase of the static stability weakens the meridional circulation cells. The increasing shortwave absorption in the atmosphere decreases the downward shortwave irradiance at the surface. As a consequence, the fluxes of enthalpy and latent heat from the surface are reduced. As a result of all these features, zonal mean precipitation and evaporation are also significantly reduced. Comparison with atmospheric fields reported by the Climate Prediction Center (NCEP/NOAA) shows that the configuration of the large-scale fields is, in a general manner, improved with the use of the Chou & Lee scheme in a monthly integration for January 1997.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.