Abstract

When herbicide concentration was constant, absorption of14C-glyphosate increased with increasing droplet size (326 to 977 μm). Amount of14C-glyphosate translocated away from the treated area, expressed as percent of absorbed, increased as droplet size decreased. Herbicide concentration of the droplet was more important than droplet number or droplet size in determining glyphosate absorption and translocation. Absorption and translocation increased with increasing herbicide concentration regardless of whether droplet size or number was altered in conjunction with herbicide concentration. This relationship explained why low spray volume (increased herbicide concentration) increased herbicide efficacy. The concentration gradient between droplet and leaf, rather than droplet coverage, was the primary mechanism responsible for the observed effect. Large droplets caused localized tissue injury, which may have caused decreased translocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.