Abstract

The magnetic field is one of the most important constituents of the cosmic space and one of the main sources of the dynamics of interacting matter in the universe. The astronomical observations imply the existence of a strong magnetic fields of up to $10^4-10^8G$ near supermassive black holes in the active galactic nuclei and even around stellar mass black holes. In this paper, with the quantum scattering theory, we analysis the Schr\"{o}edinger-type scalar wave equation of black hole immersed in magnetic field and numerically investigate its absorption cross section and scattering cross section. We find that the absorption cross sections oscillate about the geometric optical value in the high frequency regime. Furthermore in low frequency regime, the magnetic field makes the absorption cross section weaker and this effect is more obviously on lower frequency brand. On the other hand, for the effects of scattering cross sections for the black hole immersed in magnetic field, we find that the magnetic field makes the scattering flux weaker and its width narrower in the forward direction. We find that there also exists the glory phenomenon along the backforward direction. At fixed frequency, the glory peak is higher and the glory width becomes narrower due to the black hole immersed in magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.