Abstract

The two dimensional elastic wave equations are used to model wave propagation in mediums with large or unbounded domains. In order to numerically simulate those problems the equations have to be put on the computer and artificial boundary conditions that allow minimal wave reflection must be introduced. These boundary conditions are well known in the literature as absorbing or radiating boundary conditions. They have been of interest to physicists and meteorologists for some time. In this paper three different methods for deriving radiating boundary conditions for the elastic wave equations are presented. One of these techniques gives exact absorbing boundary conditions for both P (longitudinal) and S (transverse) waves generated from a surface source. From this, approximate absorbing boundary conditions are derived. These conditions are easy to employ in finite difference codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.