Abstract
A range of microstructural changes occur during the deposition and activation of CdTe based thin film solar cells. In particular, the cadmium chloride (CdCl2) activation treatment results in wholesale recrystallisation which transforms the conversion efficiency of the solar cell. One of the noticeable effects is the change of preferred orientation of the CdTe absorber. Highly orientated [111] texture is observed in as deposited or under-treated CdTe based devices. Optimized activation results in a more randomized texture and the [111] preferred texture component is significantly weakened. In this paper we use Electron Backscatter Diffraction to characterise absorber cross-sections. The focus is on how randomization of the absorber texture reflects device performance. We have had access to a range of CdTe devices using a variety of deposition techniques. We have observed a clear pattern that shows that devices with a highly orientated [111] texture have poor efficiency. Devices with a randomized texture have much higher efficiency. Here we illustrate this empirical correlation using devices deposited by Metal Organic Chemical Vapour Deposition with a range of efficiencies from 13.1 % to 17 %. We have also included the analysis of an absorber from a 18.7 % high efficiency CdSeTe/CdTe device to show that texture is similarly important in these advanced devices. We have been able to quantify the effect of texture by using multiples of uniform density or (MUD) values from the inverse pole figures. MUD figures close to 1 correlate with highest efficiency. Although the random texture of the absorber microstructure is only one of several important process factors, it appears to be a necessary feature for highest efficiency CdTe-based polycrystalline solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.