Abstract

Laser transmission welding is a well-known joining technology for thermoplastics, providing reliable and hermetical sealing without adhesives or particle formation. The main advantages of laser-based energy input - high precision, no additional adhesive and no particle emission - are essential for medical and optical applications. To obtain sufficient absorption in visually transparent polymers, thulium fibre lasers emitting in the polymers’ intrinsic absorption spectrum are used. Optics with high numerical aperture provide large intensity gradients inside the specimen, enabling selective fusing in the joining zone. Although the basic feasibility has already been demonstrated, the welding process lacks stability and productivity.Aim of this work is the determination of optimized settings for a fast and reliable welding process. Thus, the interplay of process parameters as well as their impact on the seam are analysed by thermal simulations. Calculated settings are verified by welding tests with COC, PA6 and PETG, using a fixed-focus optics and a 3D laser scanner with up to 200 mm/s feed rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call