Abstract

We consider a class of neural field models represented by a second-order nonlinear system of integro-differential equations with space-dependent delays. Such a system models interaction of populations of neurons, each with a continuum description. We justify the existence and uniqueness of solution for the system in a suitable function space. Global existence and boundedness of solutions for the system are confirmed. Two methodologies, the comparison argument and sequential contracting, are developed to establish sufficient conditions for absolute stability and synchronization among different populations of the system. Finally, we present some numerical examples to demonstrate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.