Abstract

Two-dimensional large-amplitude liquid sloshing in the rectangular rigid container is numerically simulated through absolute nodal coordinate finite element method, which can describe the large deformation of continuum by using a small number of elements. The incompressible constraint of Newtonian fluid is imposed by the penalty function method. Furthermore, the motion of rigid container is described by absolute nodal coordinate reference node and the liquid kinetic equations are derived in the total Lagrangian formulation, which can easily be combined with the solid nonlinear finite element and the multi-body system algorithms. The free sliding and non-penetrating boundary constraint equations for rectangular tank are derived. To ensure the stability and the conservation of the solution in long time simulations, the system dynamic equations are solved by Bathe integral scheme. Three numerical examples are used to verify the effectiveness of the proposed method, including the free spreading of a square liquid column and the large amplitude sloshing of liquid under rotational and horizontal excitations. A good consistency is obtained by comparing the calculated results with experimental and other numerical results reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.