Abstract
Accurate modeling of many engineering systems requires the integration of multibody system and large deformation finite element algorithms that are based on general constitutive models, account for the coupling between the large rotation and deformation, and allow capturing coupled deformation modes that cannot be captured using beam formulations implemented in existing computational algorithms and computer codes. In this investigation, a new nonlinear finite element dynamic model for the analysis of three-dimensional rubber chains and belt drives is developed using the finite element absolute nodal coordinate formulation (ANCF) that allows for a straight forward implementation of general linear and nonlinear material models for structural elements such as beams, plates and shells. Furthermore, this formulation, which is based on a more general kinematic description, can be used to predict the cross section deformation and its coupling with the extension and bending of the belt drives and rubber chains. The ANCF cross section deformation results are validated by comparison with the results obtained using solid finite elements in the case of a simple tension test problem. The effect of the use of different linear and nonlinear constitutive laws in modeling belt drives mechanism is also examined in this investigation. The finite element formulation presented in this paper is implemented in a general purpose three-dimensional flexible multibody algorithm that allows for developing detailed models of mechanical systems subject to general loading conditions, nonlinear algebraic constraint equations, and arbitrary large displacements that characterize belt drives and tracked vehicle dynamics. The successful integration of large deformation finite element and multibody system algorithms is shown to be necessary in order to be able to study the dynamics of complex tracked vehicles with rubber chains. A computer simulation of a three-dimensional multibody tracked vehicle model that consists of twenty rigid bodies and two flexible rubber chains is used in order to demonstrate the use of the formulations presented in this investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.