Abstract

We implemented an optical frequency standard based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) at 1.39 μm. The emission frequency of an extended-cavity diode laser was actively stabilized against the center of the 4(4,1)→4(4,0) transition of the H(2)(18)O ν1+ν3 band, under optical saturation conditions. The nonlinear regime of laser-gas interaction was reached by using an optical cavity with a finesse of about 8700. By filling it with an 18O-enriched water sample at a pressure of a few Pa, the Lamb dip could be observed with a full width at half-maximum of about 2 MHz. Absolute frequency stabilization was obtained by locking the cavity resonance to the center of the sub-Doppler signal, which was provided by the NICE-OHMS technique under the dispersion regime of operation. An Allan deviation analysis demonstrated a relative frequency stability of ∼5×10(-13) for an integration time of 1 s. For longer integration times, the flicker frequency noise floor set the stability at the level of 4×10(-14).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.