Abstract

The frequency comb created by a femtosecond mode-locked laser and a microstructured fiber is used to phase coherently measure the frequencies of both the Hg+ and Ca optical standards with respect to the SI second. We find the transition frequencies to be f(Hg) = 1 064 721 609 899 143(10) Hz and f(Ca) = 455 986 240 494 158(26) Hz, respectively. In addition to the unprecedented precision demonstrated here, this work is the precursor to all-optical atomic clocks based on the Hg+ and Ca standards. Furthermore, when combined with previous measurements, we find no time variations of these atomic frequencies within the uncertainties of the absolute value of( partial differential f(Ca)/ partial differential t)/f(Ca) < or =8 x 10(-14) yr(-1) and the absolute value of(partial differential f(Hg)/ partial differential t)/f(Hg) < or =30 x 10(-14) yr(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.