Abstract
Absolute distances were measured using two femtosecond lasers of different pulse repetition rates by revisiting the dual-comb interferometric method proposed by Coddington et al (2009 Nature Photon. 3 351–6). The apparatus built for experiments was designed to eliminate the dead zones in the measurement range by separating the measurement pulses from the reference pulses using orthogonal polarization. In addition, the pulse repetition rate of the signal laser was made tunable in order to extend the non-ambiguity range (NAR) by adaptively adjusting the synthetic wavelength in consideration of the de facto measurement stability in the air. Actual tests performed in the open air proved that a target distance of 69.3 m is measured without interruptions at a 200 µs update rate in the presence of a ∼170 µm drift of the optical path length caused by the fluctuation of the refractive index of air. The proposed hardware system design for effective NAR extension will facilitate the use of dual-comb interferometry for various terrestrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.