Abstract
An absolute calibration method has been developed based on the method of three-transducer spherical-wave reciprocity for the calibration of hydrophones when immersed in sandy sediment. The method enables the determination of the magnitude of the free-field voltage receive sensitivity of the hydrophone. Adoption of a co-linear configuration allows the acoustic attenuation within the sediment to be eliminated from the sensitivity calculation. Example calibrations have been performed on two hydrophones inserted into sandy sediment over the frequency range from 10 to 200 kHz. In general, a reduction in sensitivity was observed, with average reductions over the frequency range tested of 3.2 and 3.6 dB with respect to the equivalent water-based calibrations for the two hydrophones tested. Repeated measurements were undertaken to assess the robustness of the method to both the influence of the sediment disturbance associated with the hydrophone insertion and the presence of the central hydrophone. A simple finite element model, developed for one of the hydrophone designs, shows good qualitative agreement with the observed differences from water-based calibrations. The method described in this paper will be of interest to all those undertaking acoustic measurements with hydrophones immersed in sediment where the absolute sensitivity is important.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.