Abstract

Within the last two decades, a number of experimental techniques have been developed to measure mean free paths and absolute and effective cross-sections for various processes related to the interaction of low-energy electrons with condensed matter. In all of the experiments, a monochromatic electron beam impinges on a thin multilayer film composed of atoms and/or molecules condensed on a metal or semiconductor substrate held at cryogenic temperatures in an ultra-high-vacuum system. Depending on the apparatus, cross-sections are obtained from low-energy electron transmission (LEET), high-resolution electron energy loss (HREEL), x-ray photoelectron (XPS) spectroscopy, electron-stimulated desorption (ESD) of neutral and ions, or a combination of these techniques. Quasi-elastic and inelastic mean free paths have been extracted from LEET data. This method has also served to generate absolute cross-sections for electron trapping and fragment production from the dissociation of transient molecular anions. In amorphous ice, a complete set of absolute cross-sections for all inelastic losses by 1-20 eV electrons has been obtained from HREEL data. Effective cross-sections for neutral and ionic radical formation were generated by desorption and XPS experiments. These various methods are briefly described in this article, and the corresponding cross-sections in the range 0-20 eV summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.