Abstract

The absolute or convective character of inviscid instabilities in parallel shear flows can be determined by examining the branch-point singularities of the dispersion relation for complex frequencies and wavenumbers. According to a criterion developed in the study of plasma instabilities, a flow is convectively unstable when the branch-point singularities are in the lower half complex-frequency plane. These concepts are applied to a family of free shear layers with varying velocity ratio their average velocity. It is demonstrated that spatially growing waves can only be observed if the mixing layer is convectively unstable, i.e. when the velocity ratio is smaller than Rt = 1.315. When the velocity ratio is larger than Rt, the instability develops temporally. Finally, the implications of these concepts are discussed also for wakes and hot jets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call