Abstract

Mitochondrial intermembrane space (IMS) harbors a series of small, evolutionarily conserved redox-active cysteine-rich proteins. These proteins are essential for the functioning of cytochrome c oxidase, but their role in maintaining cellular redox processes is unknown. Here, we find out that in the absence of two such cysteine-rich Cx9C-Cx10C proteins, cytochrome c oxidase subunit 12 (Cox12) or cytochrome c oxidase assembly factor 6 (Coa6), Saccharomyces cerevisiae cells become sensitive under the oxidative and nitrosative stress. Interestingly, knockout of COX12 generates a significant amount of endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS) as evidenced by FACS analysis. Moreover, cellular redox status, redox-active enzymes glutathione reductase, catalase, S-nitroso glutathione reductase, and protein nitration were significantly affected in Cox12 null cells. Further, we found that an overexpression of COX12 partially protects mitochondrial respiratory subunit Sdh2 under oxidative and nitrosative stress. Taken together, we provide proof of evidence that cysteine-rich proteins in the IMS dynamically control the cellular redox milieu and actively prevent reactive nitrogen and oxygen species generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.