Abstract
Meiotic division and male gametophyte development were analyzed in one tetraploid (2n = 4x = 36) accession of Brachiaria decumbens cv. Basilisk that showed some pollen sterility. Meiotic process was typical of polyploids in that it consisted of multiple chromosome associations. Precocious chromosome migration to the poles, laggards, and micronucleus formation were abundant in both meiosis I and II and resulted in tetrads with micronuclei. After callose dissolution, microspores were released into the anther locule and had the semblance of being normal. Although each microspore initiated its differentiation by pollen mitosis, in 43.24% of the microspores, nuclear polarization was not observed and the typical hemispherical cell plate was not detected. Division was symmetric and microspores lacked differentiation between the vegetative and the generative cell. Both nuclei were of equal size, presented equal chromatin condensation, and had a spherical shape. After the first pollen mitosis and cytokinesis, each cell underwent a new symmetric mitosis without nuclear polarization. At the end of the second pollen mitosis, four equal nuclei were observed in each pollen grain. After the second cytokinesis, the cells gave rise to four equal-sized pollen grains with a similar tetrad configuration that initially remained together. Sterile pollen grains resulted from abnormal pollen mitosis. This anomaly may be explained by a mutation, probably affecting microtubule cytoskeleton formation. The importance of this male-sterile mutation for Brachiaria breeding programs is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have