Abstract

An experimental study found superconductivity in bilayer phase of La3Ni2O7, with the highest superconducting transition temperature (Tc) ∼ 80 K under pressure. Recently, some reports claimed that there exists a competitive monolayer-trilayer structural phase in La3Ni2O7 compounds. We perform the first-principles calculations and find that bilayer phase of La3Ni2O7 is energetically favorable under pressure. Although extensive studies have been done to investigate the electronic correlation and potential superconducting pairing mechanism in bilayer phase of La3Ni2O7, the phonon properties and electron-phonon coupling (EPC) in the high-pressure I4/mmm phase of La3Ni2O7 are not reported. Using the density functional theory (DFT) combined with Wannier interpolation technique, we study the phonon properties and EPC in bilayer phase of La3Ni2O7 under 29.5 GPa. Our findings reveal that EPC is insufficient to explain the observed superconducting Tc ∼ 80 K. And the calculated Fermi surface nesting may explain the experimentally observed charge density wave (CDW) transition in bilayer phase of La3Ni2O7. Our calculations substantiate that bilayer phase of La3Ni2O7 is an unconventional superconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.