Abstract
The problem of the CO dissociation on Mo (110) has been addressed by means of temperature-programmed desorption (TPD) and density-functional (DFT) calculations. The TPD spectra show a first-order CO desorption, which indicates the desorption from a "virgin" state, not a recombinative form of desorption. The height of the potential barrier for the dissociation (2.75 eV), estimated from DFT calculations, substantially exceeds the energy of CO chemisorption (2.1 eV), which makes the thermally induced CO dissociation on Mo improbable. Monte Carlo simulations of TPD spectra, performed using estimated chemisorption energies, are in good agreement with experiment and demonstrate that the two-peak shape of the spectra can be explained without involving the CO dissociation. Thus, the results of the present study finally refute the concept of a dissociative form of CO adsorption on Mo surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.