Abstract

We study the non-equilibrium behavior of three-dimensional spin glasses in the Migdal-Kadanoff approximation, that is on a hierarchical lattice. In this approximation the model has an unique ground state and equilibrium properties correctly described by the droplet model. Extensive numerical simulations show that this model lacks aging in the remanent magnetization as well as a maximum in the magnetic viscosity in disagreement with experiments as well as with numerical studies of the Edwards-Anderson model. This result strongly limits the validity of the droplet model (at least in its simplest form) as a good model for real spin glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.