Abstract
In this work, the efficient electron loss process was observed for the transmission of 10- to 18-keV Cu${}^{\ensuremath{-}}$ and Cl${}^{\ensuremath{-}}$ ions through Al${}_{2}$O${}_{3}$ nanocapillaries. The fractions of the scattered particles were simultaneously measured using a position-sensitive microchannel plate detector. The neutrals were guided through the capillary via multiple grazing scattering. In particular, the scattered Cl${}^{\ensuremath{-}}$ ions were observed in the transmission, whereas no Cu${}^{\ensuremath{-}}$ ion was formed. In contrast to highly charged ions, these results support strongly the fact that the scattering events dominate the transport of negative ions through the nanocapillaries and that there is no direct evidence for the formation of negative charge patches inside the capillaries which are able to repulse and guide negative ions efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.