Abstract

Soil cadmium (Cd) accumulation presents risks to crop safety and productivity. However, through an exogenous application of abscisic acid (ABA), its accumulation in plants can be reduced and its toxicity mitigated, thereby providing an alternative strategy to counteract Cd contamination of arable soil. In the present study, we demonstrated that exogenous ABA application alleviates Cd-induced growth inhibition and photosynthetic damage in wild-type (Col-0) Arabidopsis plants. However, these positive effects were weakened in the ABA-importing transporter (AIT1)-deficient mutant (ait1). Through further analysis, we found that upon ABA application, the decrease in Cd level significantly differed among ait1, Col-0, and the two AIT1-overexpressing transgenic plants (AIT1ox-1 and AIT1ox-2), suggesting that AIT1 mediates the Cd-reducing effects of ABA. ABA application also inhibited the expression of IRT1, ZIP1, ZIP4, and Nramp1 in Col-0 plants subjected to Cd stress. However, significant differences among the genotypes (ait1, Col-0 and AIT1ox) were only observed in terms of IRT1 expression. Overall, our findings suggest that the suppression of Cd accumulation and restoration of plant growth by exogenous ABA require the ABA-importing activity of AIT1 to inhibit IRT1 expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.