Abstract
Based on the analysis of known methods of surface hardening of aluminum alloys (chromium plating, plasma electrolytic oxidation, hard anodizing), the prospects for pulsed hard anodizing are shown both for improving the functional characteristics of alloys and for large-scale implementation of this method. The purpose of this work is to show the possibility of pulsed hard anodizing to improve the serviceability of low-strength aluminum alloy 1011 under conditions of abrasive and sliding wear. The influence of the pulsed anodizing temperature on the phase-structural state of the synthesized layers, their abrasive wear resistance, and tribological characteristics in various lubricants were established, and the mechanism of wear of these layers was proposed. It is shown that with an increase in the temperature of pulsed anodizing, the wear resistance of the synthesized layers increases, and their abrasive wear resistance decreases. The negative effect of lubricating media on the wear resistance of the synthesized layers compared to tests under dry conditions was shown, and an explanation for this phenomenon is proposed. A significant (up to 40 times) increase in wear resistance in dry friction of anodized low-strength aluminum alloy 1011 compared to high-strength aluminum alloy 1050 was shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.