Abstract

ABSTRACT To improve the abrasive waterjet drilling procedure for yttrium-stabilized zirconia-coated Inconel 718 superalloy, this study suggests an integrated approach using machine learning and an evolutionary algorithm. The objective is to simultaneously minimize the erosion diameter and taper angle of the drilled holes by identifying the best combination of drilling parameters such as stand-off distance, abrasive flow rate, waterjet pressure, and angle of impact. The machine learning models are developed using the random forest algorithm after tuning its hyperparameters to predict the erosion diameter and taper angle. The multi-verse optimization (MVO) algorithm is used to identify the best combination of drilling parameters. The comparison of results proved the efficacy of MVO over other algorithms. Confirmation experiment results are also in line with the results of MVO, since the percentage of deviation is meager. This integrative approach has the capability of significantly improving aerospace and industrial abrasive waterjet drilling operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.