Abstract
In the publication, tests were conducted on compressor turbine working blades made of EI-867 material, in accordance with the TU 14-1-402-72 standard, which were subjected to the gas non-contact aluminizing process. Metallographic analyses of the produced aluminide layer were undertaken, and the phase components of the aluminide layer microstructure were identified. This identification was achieved by analyzing the chemical composition in micro-areas using the EDS attachment in a scanning electron microscope and using X-ray diffraction. Additionally, hardness and creep resistance tests of the blades, after undergoing solution and aging processes, were performed over different durations. The research was aimed at exploring the feasibility of the aluminizing process using the "above the pack" method on parts made of EI-867 material and understanding the process's impact on the creep resistance of the part. Experimental research have shown that aluminizing turbine blades with EI-867 using the "above the pack" method to obtain a layer thickness in the range of 0.03-0.06 mm is possible within 10 hours at 950ºC. Aluminizing with the analyzed method results in the formation of an aluminized layer with a three-phase structure that ensures the appropriate strength of the coating. However, it has been shown that the aluminizing process using the "above the pack" method with the applied time of 10 hours causes a significant reduction in the creep resistance of the material. Based on the obtained results, it was shown that the non-contact aluminizing method for turbine blades made of EI 867 material does not meet aviation requirements for safe operation due to a significant reduction in mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.