Abstract
A characterization of fuzzy bags with fuzzy integers (ℕf) provides a general framework in which sets, bags, fuzzy sets and fuzzy bags are treated in a uniform way. In bag theory, the difference between two bags A and B is the relative complement of A intersection B to A. With fuzzy bags defined on ℕf, this difference does not always exist and, in such a case, only approximations of the exact result can be defined. The problem comes from the fact that the fuzzy bag model considered so far is based on positive fuzzy integers. In this paper, we show that fuzzy relative integers (ℤf) offer a well-founded framework in which the difference of two fuzzy bags is always defined.KeywordsEquivalence ClassFuzzy NumberExtension PrincipleOptimistic DifferenceFuzzy EquationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have