Abstract

Tolerance rough set model is an effective tool to reduce attributes in incomplete decision tables. Over 40 years, several attribute reduction methods have been proposed to improve the efficiency of execution time and the number of attributes of the reduct. However, they are classical filter algorithms, in which the classification accuracy of decision tables is computed after obtaining the reducts. Therefore, the obtained reducts of these algorithms are not optimal in terms of reduct cardinality and classification accuracy. In this paper, we propose a filter-wrapper algorithm to find a reduct in incomplete decision tables. We then use this measure to determine the importance of the property and select the attribute based on the calculated importance (filter phase). In the next step, we find the reduct with the highest classification accuracy by iterating over elements of the set containing the sequence of attributes selected in the first step (wrapper phase). To verify the effectiveness of the method, we conduct experiments on 6 famous UCI data sets. Experimental results show that the proposed method increase classification accuracy as well as reduce the cardinality of reduct compared to Algorithm 1 [12].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.