Abstract

To test the hypothesis that the tip-links of hair-cell stereocilia are essential for mechanoelectrical transduction, tip-links of isolated outer hair cells (OHCs) of the guinea-pig cochlea were eliminated with a proteolytic enzyme, elastase, and the influence on the receptor potential measured with the whole-cell patch-clamp technique. Within 45 s of immersion of the hair bundle in 20 IU/ml elastase, the receptor potential in response to direct deflection of the hair bundle was irreversibly abolished. The electrical input impedance of the cell remained unchanged, implying that the channels of the basolateral membrane were not affected by elastase. The effect of elastase on the receptor potential was comparable to changes seen after mechanically induced hair-bundle damage. As a further control, a putative transduction-channel blocker, dihydrostreptomycin (68 μM), which does not affect tip-links, was applied to the hair bundle. Although the receptor potential was also blocked by dihydrostreptomycin, the effect was reversible. The results suggest that tip-links are required for mechanoelectrical transduction of mammalian OHCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.