Abstract
The reduced β-globin synthesis characterizing the β + thalassemia phenotype has been shown to be caused by anomalous processing within the small Intervening sequence (IVS1) of the β-globin mRNA precursor. The β-globin gene from such patients contains a single base substitution within IVS1, located 22 bp from the 3′ junction between IVS1 and exon 2, creating an alternative splice site within IVS1 and resulting in retention of the 3′-terminal 19 bases of IVS1. We have identified this abnormally spliced mRNA in the reticulocyte RNA of two patients with β + thalassemia, by S1 nuclease mapping and primer-extension analysis. Moreover, a cloned β +-thalassemic gene preferentially generated the anomalously spliced RNA when expressed In monkey kidney cells. The anomalously spliced RNA constituted approximately 80%–90%, and normal β RNA approximately 10%–20%, of the total β mRNA. In contrast, the small amount of β mRNA present in reticulocytes from such patients consisted predominantly of normal β mRNA. These results suggest that the reduced amount of normally functioning β mRNA present in such patients results from preferential processing at the alternative splice site, with subsequent Instability, reduced nuclear processing and/or inadequate cytoplasmic transport of the abnormal RNA species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have