Abstract
Video surveillance is widely used in various domains like military, commercial and consumer areas. One of the objectives in video surveillance is the detection of normal and abnormal behavior.It has always been a challenge to accurately identify such events in any real time video sequence. In this paper, abnormality detection method using Local Binary Pattern and k-means labeling basedfeed-forward neural network has been proposed. The performance of the proposed method has also been compared with four other techniques in literature to show its worthiness. It can be seen in the experimental results that an accuracy of up to 98% has been achieved for the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.