Abstract
The kidneys have a critical role in long-term control of arterial pressure by regulating extracellular fluid and plasma volume. According to the renal body fluid feedback mechanism for long-term control, persistent hypertension can only occur as a result of a reduction in renal sodium excretory function or a hypertensive shift in the pressure-natriuresis relationship. Although an abnormal relationship between renal perfusion pressure and renal sodium excretion has been identified in every type of hypertension where it has been sought, factors responsible for this effect are still unclear. Nitric oxide (NO) is produced within the kidney and plays an important role in the control of many intrarenal processes which regulate the renal response to changes in perfusion pressure and thus, help determine plasma volume and blood pressure. Numerous studies have shown that long-term inhibition of NO synthesis results in a chronic rightward shift and marked attenuation in renal pressure-natriuresis. Recent studies have shown that certain animal models of genetic hypertension and forms of human hypertension areas are associated with a decrease in NO synthesis. Reductions in NO synthesis reduces renal sodium excretory function not only through direct actions on the renal vasculature, but through modulation of other vasoconstrictor processes and through direct and indirect alterations in tubular sodium transport. The causes and consequences of the dysregulation of NO in hypertension and other renal disease processes remain an important area of investigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have