Abstract

BackgroundAmblyopia (lazy eye) is one of the most common causes of monocular visual impairment. Intensive investigation has shown that amblyopes suffer from a range of deficits not only in the primary visual cortex but also the extra-striate visual cortex. However, amblyopic brain processing deficits in large-scale information networks especially in the visual network remain unclear.MethodsThrough resting state functional magnetic resonance imaging (rs-fMRI), we studied the functional connectivity and efficiency of the brain visual processing networks in 18 anisometropic amblyopic patients and 18 healthy controls (HCs).ResultsWe found a loss of functional correlation within the higher visual network (HVN) and the visuospatial network (VSN) in amblyopes. Additionally, compared with HCs, amblyopic patients exhibited disruptions in local efficiency in the V3v (third visual cortex, ventral part) and V4 (fourth visual cortex) of the HVN, as well as in the PFt, hIP3 (human intraparietal area 3), and BA7p (Brodmann area 7 posterior) of the VSN. No significant alterations were found in the primary visual network (PVN).ConclusionOur results indicate that amblyopia results in an intrinsic decrease of both network functional correlations and local efficiencies in the extra-striate visual networks.

Highlights

  • IntroductionAmblyopia (lazy eye), fundamentally a neurological disorder, is characterized by reduced vision in an otherwise normal eye with the presence of an amblyogenic factor, including early child strabismus (ocular misalignment), anisometropia (difference in refractive error), or ametropia (large symmetric refractive errors) and, more rarely, image deprivation (for review, please see Holmes and Clarke [1])

  • Amblyopia, fundamentally a neurological disorder, is characterized by reduced vision in an otherwise normal eye with the presence of an amblyogenic factor, including early child strabismus, anisometropia, or ametropia and, more rarely, image deprivation

  • Brain regions showing synchronized fluctuations during rs-Functional magnetic resonance imaging (fMRI) form the intrinsic connectivity networks (ICNs), which have been demonstrated to provide the physiological basis for cortical information processing, and to be able to abstract and suspend performance influences combined with various neurological diseases [12]

Read more

Summary

Introduction

Amblyopia (lazy eye), fundamentally a neurological disorder, is characterized by reduced vision in an otherwise normal eye with the presence of an amblyogenic factor, including early child strabismus (ocular misalignment), anisometropia (difference in refractive error), or ametropia (large symmetric refractive errors) and, more rarely, image deprivation (for review, please see Holmes and Clarke [1]). Only few rs-fMRI studies investigated amblyopic intrinsic functional connectivity e.g., Ding, Liu [23] found altered connectivity between the primary visual cortex (V1) with the cerebellum and the inferior parietal lobule; Wang, Li [24] have figured out decreased functional connectivity density in the visual ICNs of amblyopic children; and Mendola, Lam [25] have revealed abnormal retinotopically organized functional connectivity of visual areas in amblyopia. It remains unknown whether and how the local efficiency of the brain network evolves from the amblyopes’ abnormal visual experiences. Amblyopic brain processing deficits in large-scale information networks especially in the visual network remain unclear

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.