Abstract

In this work, a highly dense Cf/ZrC-SiC-based composite is fabricated by an improved reactive melt infiltration (RMI). The ablation resistance of the composite is studied by air plasma test. The RMI-Cf/ZrC-SiC possesses a low porosity (3.49%) and high thermal conductivity. The dense microstructure can effectively retard oxygen from diffusing into the interior composite. Meanwhile, the high thermal conductivity makes the composite transfer heat timely during ablation, which reduces the heat accumulation on the ablation surface and weakens the thermal damage to the composite. Consequently, the as-fabricated composite exhibits an excellent ablation resistance. Compared to conventional PIP-Cf/ZrC-SiC composite, the linear and mass recession rates of the RMI-Cf/ZrC-SiC decline by 98.07% and 39.02% at a heat flux of 4.02 MW/m2. Also, a continuous SiO2-ZrO2 layer forms on the sample surface, which isolates the sample surface from the plasma flame and protect the composites from further oxidation and ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.