Abstract

The Sillen X1 series of Bi(3+)A(2+)O2X (A = Cd, Ca, Sr, Ba, Pb; X = Cl, Br, I) compounds is composed of three main crystallographic types, namely, the tetragonal form (space group (S.G.) I4/mmm), the orthorhombic form (S.G. Cmcm), and the monoclinic form (S.G. P21/m). Because of Bi(3+)/A(2+) disorder the Bi(3+) based photoluminescence (PL) of the tetragonal polytypes is quenched at room temperature (RT). In the two other ordered forms, the Bi-O-Bi connectivity is different but limited, such that bluish/greenish emission occurs at RT in the monoclinic CdBiO2Cl and CaBiO2Cl and orthorhombic SrBiO2Cl and BaBiO2Cl phases. The crystal structure of BaBiO2Br was refined in the orthorhombic Cmcm space group and also shows RT emission. Focusing on the RT luminescent activity as a key parameter, the PL active compounds were investigated by means of density functional theory calculations and UV-visible reflectance spectroscopy. The influence of A and X ions on the excitation energy is discussed by analyzing the A-O-Bi and Bi-X bonding schemes and gives some insights for rational tuning of both the excitation and emission energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.