Abstract

BackgroundSchizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods. MethodsA total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity. ResultsSchizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features. ConclusionsThe static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.