Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), a condition characterized by an excessive accumulation of triglycerides (TGs) in hepatocytes, has dramatically increased globally during recent decades. MicroRNAs (miRs) have been suggested to play crucial roles in many complex diseases and lipid metabolism. Our results indicated that miR199a-5p was remarkably upregulated in free fatty acid (FA)-treated hepatocytes. To investigate the role of miR199a-5p in the pathogenesis of fatty liver and the potential mechanism by which miR199a-5p regulates NAFLD, we first transfected two hepatocyte cell lines, HepG2 and AML12 cells, with agomiR199a-5p or antagomiR199a-5p. Our results indicated that miR199a-5p overexpression exacerbated deposition of FA and inhibited ATP levels and mitochondrial DNA (mtDNA) contents. Consistently, suppression of miR199a-5p partially alleviated deposition of FA and increased ATP levels and mtDNA contents. Moreover, miR199a-5p suppressed the expression of mitochondrial FA β-oxidation-related genes through inhibition of caveolin1 (CAV1) and the related peroxisome proliferator-activated receptor alpha (PPARα) pathway. Furthermore, suppression of CAV1 gene expression by CAV1 siRNA inhibited the PPARα signalling pathway. Finally, we examined the expression of miR199a-5p in liver samples derived from mice fed a high-fat diet, db/db mice, ob/ob mice and NAFLD patients, and found that miR199a-5p was upregulated while CAV1 and PPARA were downregulated in these systems, which was strongly indicative of the essential role of miR199a-5p in NAFLD. In summary, miR199a-5p plays a vital role in lipid metabolism, mitochondrial activity and mitochondrial β-oxidation in liver. Upregulated miR199a-5p in hepatocytes may contribute to impaired FA β-oxidation in mitochondria and aberrant lipid deposits, probably via CAV1 and the PPARα pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.