Abstract
AbstractFollowing the method of Seifert surfaces in knot theory, we define arithmetic linking numbers and height pairings of ideals using arithmetic duality theorems, and compute them in terms of $n$-th power residue symbols. This formalism leads to a precise arithmetic analogue of a “path-integral formula” for linking numbers.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have