Abstract

Mechanical oscillators can be sensitive to very small forces. Low frequency effects are up-converted to higher frequency by rotating the oscillator. We show that for 2-dimensional oscillators rotating at frequency much higher than the signal the thermal noise force due to internal losses and competing with it is abated as the square root of the rotation frequency. We also show that rotation at frequency much higher than the natural one is possible if the oscillator has 2 degrees of freedom, and describe how this property applies also to torsion balances. In addition, in the 2D oscillator the signal is up-converted above resonance without being attenuated as in the 1D case, thus relaxing requirements on the read out. This work indicates that proof masses weakly coupled in 2D and rapidly rotating can play a major role in very small force physics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.