Abstract
Modelling microalgae-bacteria in wastewater treatment systems has gained significant attention in the last few years. In this study, we present an enhanced version of the ABACO model, named ABACO-2, which demonstrates improved accuracy through validation in outdoor pilot-scale systems. ABACO-2 enables the comprehensive characterization of microalgae-bacteria consortia dynamics, allowing to predict the biomass concentration (microalgae, heterotrophic bacteria, and nitrifying bacteria) and nutrient evolution. The updated version of the model incorporates new equations for nutrient coefficient yields, oxygen mass balance, and microorganism cellular decay, while significantly reducing the number of calibrated parameters, simplifying the parameter identification. Calibration and validation were performed using data from a 80 m2 raceway reactor operated in a semicontinuous mode over an extensive period (May to November, total of 206 days) at a fixed dilution rate of 0.2 day-1 (corresponding to 5 days of hydraulic retention time), where untreated urban wastewater was used as culture medium. ABACO-2 exhibited robustness, accurately forecasting biomass production, population dynamics, nutrient recovery, and prevailing culture conditions across a wide range of environmental and water composition conditions. Mathematical models are essential instruments for the industrial development and optimization of microalgae-related wastewater treatment processes, thereby contributing to the sustainability of the wastewater treatment industry.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have